ФУНКЦИЙ ТЕОРИЯ: ФУНКЦИИ КОМПЛЕКСНОГО ПЕРЕМЕННОГО - Definition. Was ist ФУНКЦИЙ ТЕОРИЯ: ФУНКЦИИ КОМПЛЕКСНОГО ПЕРЕМЕННОГО
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist ФУНКЦИЙ ТЕОРИЯ: ФУНКЦИИ КОМПЛЕКСНОГО ПЕРЕМЕННОГО - definition

ФУНКЦИЯ, ОБЛАСТИ ОПРЕДЕЛЕНИЯ И ЗНАЧЕНИЙ КОТОРОЙ - ПОДМНОЖЕСТВА КОМПЛЕКСНЫХ ЧИСЕЛ
Функция комплексной переменной; Функция комплексного переменного; Функции комплексного переменного

ФУНКЦИЙ ТЕОРИЯ: ФУНКЦИИ КОМПЛЕКСНОГО ПЕРЕМЕННОГО      
К статье ФУНКЦИЙ ТЕОРИЯ
Под "функциями комплексного переменного" обычно принято понимать аналитические (или голоморфные) функции, особый класс функций, представимых степенными рядами. По традиции этот предмет был и в определенной степени продолжает оставаться в самом центре математического анализа; и хотя теория функций комплексного переменного необычайно важна как активно развивающаяся область чистой математики, своим существованием и в значительной мере своим высоким престижем теория функций комплексного переменного обязана успехам в решении проблем прикладной математики в таких областях, как теория дифференциальных уравнений, гидродинамика и теория потенциала. Известная ранее под общим названием "теория функций", эта теория обрела независимое существование в конце 19 в., когда под давлением более строгого истолкования понятий множества, числа, интеграла и производной произошло разделение между теорией функций действительного переменного и теорией функций комплексного переменного.
ЭЛЛИПТИЧЕСКИЕ ФУНКЦИИ         
Теория эллиптических функций; Эллиптические функции
функции, связанные с интегралами, содержащими квадратные корни из многочленов 3-й или 4-й степеней (появляются, напр., при вычислении длины дуги эллипса).
Эллиптическая функция         
Теория эллиптических функций; Эллиптические функции
Эллиптическая функция — в комплексном анализе периодическая в двух направлениях функция, заданная на комплексной плоскости. Эллиптические функции можно рассматривать как аналоги тригонометрических (имеющих только один период).

Wikipedia

Комплексная функция

Комплексная функция — основной объект изучения теории функций комплексной переменной, комплекснозначная функция комплексного аргумента: f : C C {\displaystyle f\colon \mathbb {C} \to \mathbb {C} } .

Как и комплекснозначная функция вещественной переменной может быть представлена в виде:

f ( z ) = u ( z ) + i v ( z ) {\displaystyle f(z)=u(z)+iv(z)} ,

где u ( z ) {\displaystyle u(z)} и v ( z ) {\displaystyle v(z)} — вещественнозначные функции комплексного аргумента, называемые соответственно вещественной и мнимой частью функции f ( z ) {\displaystyle f(z)} . В отличие от вещественных функций, между компонентами разложения имеется более глубокая связь, например, для того, чтобы функция f ( z ) {\displaystyle f(z)} была дифференцируема в смысле функции комплексной переменной, должны выполняться условия Коши — Римана:

u x = v y {\displaystyle {\frac {\partial u}{\partial x}}={\frac {\partial v}{\partial y}}} ;
u y = v x {\displaystyle {\frac {\partial u}{\partial y}}=-{\frac {\partial v}{\partial x}}} .

Примерами аналитических функций комплексной переменной являются: степенная функция, экспонента, гамма-функция, дзета-функция Римана, хребтовая функция и многие другие, а также обратные им функции и любые их комбинации. Однако действительная часть комплексного числа R e z {\displaystyle \mathrm {Re} \,z} , мнимая часть I m z {\displaystyle \mathrm {Im} \,z} , комплексное сопряжение z ¯ {\displaystyle {\bar {z}}} , модуль r = | z | {\displaystyle r=|z|} и аргумент φ ( z ) {\displaystyle \varphi (z)} аналитическими функциями комплексного переменного не являются, так как не удовлетворяют условиям Коши — Римана.

Was ist ФУНКЦИЙ ТЕОРИЯ: ФУНКЦИИ КОМПЛЕКСНОГО ПЕРЕМЕННОГО - Definition